Structure Determination of $\mathrm{Ca}_{2} \mathbf{M n O}_{4}$ and $\mathrm{Ca}_{2} \mathbf{M n O}_{3.5}$ by X-Ray and Neutron Methods

M. E. LEONOWICZ,* K. R. POEPPELMEIER, \dagger and J. M. LONGO \ddagger
Exxon Research and Engineering Company, Annandale, New Jersey 08801

Received September 28, 1984; in revised form January 11, 1985

Abstract

The X-ray structure of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ by single crystal analysis and the X -ray and neutron structures of polycrystalline $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ by Rietveld analysis have been determined. $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ crystallizes in the tetragonal space group $14_{1} / a c d$ with lattice constants $a=5.183(1) \AA$ and $c=24.117(4) \AA$, a super-cell (a $=\sqrt{2} a^{\prime}, c=2 c^{\prime}$) of the $14 / \mathrm{mmm}$ unit cell reported from powder diffraction work. This larger unit cell results from rotations of the MnO_{6} octahedra about their z axes which produce a $\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}$ bond angle of 161.6° between corner-connected polyhedra. $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ crystallizes in the orthorhombic space group $B b c m$ with lattice constants $a=5.30 \AA, b=10.05 \AA$, and $c=12.23 \AA$. The oxygen defects in the structure produce layers of interconnected MnO_{5} square-pyramids analogous to those found in the defect perovskite $\mathrm{CaMnO}_{2.5}$. The relationship between the $\mathrm{Ca}_{2} \mathrm{MnO}_{4} / \mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ and the $\mathrm{CaMnO}_{3} /$ $\mathrm{CaMnO}_{2.5}$ structures is discussed. © 1985 Academic Press, Inc.

Introduction

In a previous paper (1) we described the preparation of the compounds $\mathrm{CaMnO}_{2.5}$ and $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ by low-temperature reduction of CaMnO_{3} and $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$. Subsequently, we showed (2) that the low-temperature synthesis of the oxygen-deficient compound $\mathrm{CaMnO}_{2.5}$ from $\mathrm{CaMnO}_{3.0}$ preserves the existing structural framework of the oxidized precursor. This paper describes the synthesis and X-ray structure determination of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ single crystals and the structure determination of polycrystalline $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ by both X-ray and neutron Rietveld refinement methods. The

[^0]essential structural features found in $\mathrm{CaMnO}_{2.5}$ (2) have now been verified for the $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ material. Both compounds show a common distortion of the MnO_{6} octahedral frameworks found in the perovskite structure of CaMnO_{3} and the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$, a distortion due to oxygen vacancies generated by the reduction of Mn^{4+} to $\mathbf{M n}^{3+}$. Thus, the original basis (1) upon which the $\mathrm{CaMnO}_{2.5}$ model was proposed, namely that the preference of Mn^{+3} for square pyramidal coordination would dictate the structural chemistry in the reduced material, appears to be valid. Furthermore, these results are consistent with a growing literature $(3,4)$ suggesting that the physical and chemical properties of oxygen-deficient compounds of the type $A B O_{3-x}$ and $A_{2} B O_{4-x}$ are strongly affected by some preferred coordination of B cations adjacent to oxygen vacancies.

Experimental

Sample Preparation

Single crystals of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ were grown from a flux of calcium chloride saturated with ~ 7 mole $\%$ calcium oxide. The charge of polycrystalline $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ had been prepared from the calcite precursor $(5,6)$ $\mathrm{Ca}_{2} \mathrm{Mn}\left(\mathrm{CO}_{3}\right)_{3}$ by decomposition at $1000^{\circ} \mathrm{C}$ for 3 hr in air. The $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ was added to the flux mixture in a platinum crucible, heated to $900^{\circ} \mathrm{C}$, and held at this temperature for 3 days. The sample was cooled a few degrees per hour through the eutectic of the $\mathrm{CaO}-\mathrm{CaCl}_{2}$ system (7) to $700^{\circ} \mathrm{C}$, and then more rapidly to room temperature. The crystals were separated from the flux by a water wash. Alternatively, crystals of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ can be grown starting with polycrystalline CaMnO_{3} and a molar equivalent of CaO in a CaCl_{2} flux saturated with CaO .

Previous work (1) with polycrystalline CaMnO and $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ had shown that the oxygen-deficient phases $\mathrm{CaMnO}_{2.5}$ and Ca_{2} $\mathrm{MnO}_{3.5}$ could be prepared by reduction in dilute hydrogen in the narrow temperature range $300-325^{\circ} \mathrm{C}$. As with single crystals of CaMnO_{3} (2), crystals of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ could not be transformed into single crystals of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ with dilute hydrogen at $300^{\circ} \mathrm{C}$. Therefore, the present structural study on $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ has been limited to polycrystalline samples. Unreacted carbonate precursor was not detected by XRD or infrared analysis of the polycrystalline $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ used in this work. The identification of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ by XRD was confirmed by comparison with the cell parameters reported (8) in the literature, although the careful examination of the $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ single crystals by X-ray diffraction done in this study has revealed a larger unit cell. Cation stoichiometry and oxygen content of both $\mathrm{Ca}_{2} \mathrm{MnO}_{4.0}$ and $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ were verified by thermogravimetric methods described previously (1); their experimentally determined compositions agreed with theoretical
compositions to within $1 \mathrm{at} . \%$ for oxygen and $0.25 \mathrm{at} . \%$ for calcium and manganese.

$\mathrm{Ca}_{2} \mathrm{MnO}_{4}-$ Single Crystal Data Collection and Structure Refinement

Initially, several single crystals of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ were examined using an EnrafNonius CAD-4 diffractometer in automatic search mode with graphite-monochromatized MoK $\bar{\alpha}$ radiation. The reflections located in these experiments were consistent with the unit cell and space group ($a^{\prime}=$ $3.665(1) \AA, c^{\prime}=12.061(2) \AA, I 4 / \mathrm{mmm}, D_{4 h}^{17}$, No. 139) previously reported in the literature (8) for this material. Attempts to refine the literature (8) structure $(\mathrm{Ca}(4 e): z=$ 0.3502; $\mathrm{Mn}(2 a) ; 01(4 c) ; 02(4 e): z=0.1613)$ with data (341 intensities) collected using this unit cell, however, converged to unacceptably high discrepancy factors ($R_{1}=$ $0.080, R_{2}=0.116,13$ variables). The difference Fourier synthesis computed at this point revealed apparent disorder at the 01 site, with significant electron density at $\left(\pm \delta, \frac{1}{2}, 0\right)$ in the $x y$ plane. While subsequent parameterization of this apparent disorder ($\delta=0.081$) reduced the discrepancy factors ($R_{1}=0.026, R_{2}=0.037,12$ variables), a more careful search for diffracted intensities on the automatic diffractometer revealed that the true lattice of this material is a super-cell of the literature values, with a $=\sqrt{2} a^{\prime}$ and $c=2 c^{\prime}$. The analysis of the structure was performed using data collected with this larger unit cell at $20^{\circ} \mathrm{C}$. The tetragonal $14 / \mathrm{mmm}_{2} \mathrm{~A}_{2} \mathrm{BO}_{4}$ structure type and monoclinic, orthorhombic, and other tetragonal distortions of it have been the subjects of recent studies $(9,10)$ in the literature.
The crystal data for $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ are summarized in Table I. The space group is uniquely defined by systematic absences and the lattice parameter values were derived from least-squares refinement of the centered angles of 25 reflections. Structure factors were derived by the usual formulas

TABLE I
Crystallographic Data for $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$

Sample size (mm)	$0.10 \times 0.10 \times 0.07$
Formula	$\mathrm{Ca}_{2} \mathrm{MnO}_{4}$
Formula wt. (g/mole)	199.09
Space group	$14_{1} /$ acd, $D_{4 h}^{20}$
	No. 142, 2nd setting
2	8
Density, (calc. g/ml)	4.08
$\mu\left(\mathrm{mm}^{-1}\right)$, MoK $\bar{\alpha}(\lambda=0.71073 \AA)$:	7.09
Lattice constants	
$a(\AA)$	5.183(1)
$c(\AA)$	24.117(4)
$V\left(\AA^{3}\right)$	647.9(4)
Data collection	
2θ range	$0-120^{\circ}$
Scan type	$\theta-2 \theta$
Scan rate	Variable, 2-13 ${ }^{\text {a }}$, $2 \theta / \mathrm{min}$
Scan range	$\begin{array}{r} 2 \theta\left(K \alpha_{1}\right)-0.9^{\circ} \text { to } \\ 2 \theta\left(K \alpha_{2}\right)+0.9^{\circ} \end{array}$
No. unique data examined	1099
No. data observed, $I \geq 2 \sigma(I)$	375
Refinement	
\boldsymbol{R}_{1}	0.022
R_{2}	0.030
ESD, unit wt.	0.90
Data/parameters	19.7
No. parameters refined	19
Extinction, g	4.39×10^{-7}

without correction for absorption of X rays because several ψ scans displayed negligible variation in diffracted intensity. Three reflections periodically monitored during the data collection displayed insignificant intensity variations. The model used to begin the structure refinement was obtained by transforming the literature coordinates to the super-cell and then placing the Mn atom at ($8 a$). An alternative model that placed the Mn atom in ($8 b$) with site symmetry 222 converged at the point where the discrepancy factors were $\sim 15 \%$. All calculations in the single crystal structure determination were performed using the EnrafNonius SDP package of programs, an integrated set of crystallographic programs for PDP-11 series computers. The quantity minimized in the least-squares was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2}$, where $w=\sigma\left(F_{\mathrm{o}}\right)^{-2}$, and the form of the extinction correction applied was $\left(1+g I_{c}\right)^{-1}$. The inclusion of an extinction correction in the final stages of the
structure refinement resulted in substantial improvements in the figures-of-merit. The relatively low number of data adjudged observed even at the $2 \sigma(I)$ level results from the large 2θ range explored in the data collection. The final difference Fourier synthesis was generally featureless, with peaks of $\sim \frac{1}{2} e \AA^{-3}$ present at several places throughout the unit cell. A listing of $\left|F_{\text {obs }}\right|$ and $\left|F_{\text {calc }}\right|$ values is provided as supplementary material. ${ }^{1}$ Table II lists the final refined structural parameters and Table III gives derived bond distances and the $\mathrm{Mn}-\mathrm{O} 2-\mathrm{Mn}$ bond angle. All bond angles internal to the Mn octahedra are constrained by symmetry to ideal values.
The question arises as to why evidence for the $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ super-cell has not been reported in powder diffraction work (8) done on this material. The reason may be the complete absence of any reflection in the low angle region of the diffractogram that would necessitate indexing the pattern with a unit cell larger than that previously reported in the literature. This results from the combined effect of the many general systematic absences characteristic of $I 4, /$ acd along with additional extinctions that occur because all atoms in the $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ structure lie in special positions in the unit cell. The lowest angle reflections in the powder pattern that cannot be indexed on the literature cell are the $(211,213)$ pair at 39.0 and $40.5^{\circ} 2 \theta$ for $\mathrm{CuK} \alpha$ radiation. Furthermore, the class of l-odd reflections in this structure are generally weak, because

[^1]TABLE II
Fractional Coordinates and Temperature Factors for $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$

Atom	Site	Symmetry	x	y	z	$B_{\text {eqv }}\left(\AA^{2}\right)$
Ca	16d	2	0.0	0.25	0.55101(1)	$0.565(4)$
Mn	$8 a$	$\overline{4}$	0.0	0.25	0.375	0.223(2)
01	$16 d$	2	0.0	0.25	0.45559(6)	0.62(2)
O 2	$16 f$	2	0.2095(4)	$\boldsymbol{x}+0.25$	0.125	0.53 (1)
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ca	$0.0088(1)$	$0.00313(8)$	$0.00018(1)$	0.0023(3)	0.0	0.0
Mn	0.00164(3)	β_{11}	$0.00014(1)$	0.0	0.0	0.0
O1	0.0048(3)	0.0094(4)	$0.00014(1)$	-0.000(1)	0.0	0.0
O 2	0.0036(2)	β_{11}	$0.00035(2)$	0.0029(4)	0.0001(2)	$-\beta_{13}$

Note. Estimated standard deviations in parentheses refer to the last significant digit. The form of the anisotropic thermal parameter is $\exp \left[-\left(h^{2} \boldsymbol{\beta}_{11}+\boldsymbol{k}^{2} \boldsymbol{\beta}_{22}+{ }^{2} \boldsymbol{\beta}_{33}+h k \beta_{12}+h / \beta_{13}+\boldsymbol{k} \boldsymbol{\beta}_{23}\right)\right]$.
only the oxygen atom O 2 in special position (16 f) contributes to their intensities. Thus, a few weak peaks at higher angles might have been overlooked in the indexing process and, indeed, careful examination of a $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ powder pattern revealed minor deviations from background at the positions of the (211) and (213) reflections; such deviations could easily be dismissed as noise.

TABLE III
Structural Results for
$\mathrm{Ca}_{2} \mathrm{MnO}_{4}$

$\mathrm{Ca}-\mathrm{O} 1[1 X]^{a}$	$2.301(1) \AA^{b}$
$\mathrm{O} 1[4 X]$	$2.596(1)$
$\mathrm{O} 2[2 X]$	$2.354(1)$
$\mathrm{O} 2[2 X]$	$2.778(1)$
$\mathrm{Mn}-\mathrm{O} 1[2 X]$	$1.944(1)$
$\mathrm{O} 2[4 X]$	$1.856(2)$
$\mathrm{O} 1-\mathrm{O} 2$	$2.688(2)$
$\mathrm{O} 2-\mathrm{O} 2$	$2.625(2)$
$\mathrm{Mn}-\mathrm{O} 2-\mathrm{Mn}$	$161.6(1)^{\circ}$

[^2]
$\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}-$ Powder Data Collection and Structure Refinement

Both neutron and X-ray powder diffraction data were collected on a polycrystalline sample of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$. Neutron data were obtained at the Missouri University Research Reactor (MURR) using neutrons with wavelength $1.293 \AA$ incident on a $10-\mathrm{g}$ sample tightly compressed in a sealed vanadium cylinder. The data, collected at room temperature, should be free of magnetic scattering effects, since magnetic susceptibility measurements performed on this material revealed an ordering temperature well below 20°. Diffraction data were collected by step scanning over an angular range of 5° $\leq 2 \theta \leq 100^{\circ}$ in increments of $0.1^{\circ} 2 \theta$ on a two-axis diffractometer. X-Ray data were collected on the same sample with $\mathrm{CuK} \bar{\alpha}$ radiation using a Philips APD 3600/02 automated powder diffractometer equipped with a graphite diffracted-beam monochromator and a θ-compensating divergence slit mechanism. The sample was tightly packed from the rear of the sample holder and data were collected in the symmetrical reflection mode by step scanning over an angular range of $13^{\circ} \leq 2 \theta \leq 123^{\circ}$ in increments of $0.04^{\circ} 2 \theta$ at room temperature.

The diffractogram of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ can be indexed using an orthorhombic unit cell with $a=5.30, b=10.05, c=12.23 \AA$ and systematic absences corresponding to the space group $B b c m\left[(0,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)+: \pm(x\right.$, $y, z), \pm(-x,-y, z), \pm\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right), \pm\left(\frac{1}{2}\right.$ $\left.\left.+x, \frac{1}{2}-y,-z\right)\right]$, a nonstandard setting of the space group Cmca ($D_{2 h}^{18}$, No. 64). The analysis was carried out in Bbcm because the structure of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ is intimately related to that of $\mathrm{CaMnO}_{2.5}$, which has orthorhombic lattice constants $a=5.424, b$ $=10.230, c=3.735 \AA$ and space group Pbam ($D_{2 h}^{9}$, No. 55). This choice of space group setting emphasizes the similarity of lattice constants and space symmetry that exists between the two materials, since $B b c m$ also has an a glide plane normal to the b axis. Thus, starting values for the x and y coordinates of the $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ structural model could be taken directly from those of $\mathrm{CaMnO}_{2.5} ; z$ coordinates for the two atoms (Ca and O 1) not restricted to the $z=0$ mirror plane were derived from the corresponding atoms in the fully oxidized material $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$. Using Wyckoff notation analogous to that used for the standard setting, the initial coordinates for the structural model were as follows: $\mathrm{Ca}(16 \mathrm{~g}): x=\frac{3}{4}$, $y \simeq \frac{1}{8}, z \simeq \frac{1}{6} ; \operatorname{Mn}(8 f): x \simeq \frac{1}{4}, y \simeq \frac{1}{8}, z=0 ;$ O1(16g): $x \simeq \frac{1}{4}, y \simeq \frac{1}{8}, z \simeq \frac{1}{6} ;$ O2(8f): $x \simeq 0, y$ $\simeq \frac{1}{4}, z=0 ; \mathrm{O} 3(4 a): x=0, y=0, z=0$. Coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$) in the standard setting Cmca may be obtained from those (x, y, z) in $B b c m$ by the transformation $x^{\prime}=z$, $y^{\prime}=x, z^{\prime}=y$.

The structural refinement of both the Xray and neutron powder data was performed using the Rietveld analysis computer program DBW3.2 provided (11, 12) by D. B. Wiles and R. A. Young. The refinement was done in stages, with the atomic coordinates and thermal parameters held fixed in the initial calculations and subsequently allowed to vary only after the scale, background, half-width, and unit cell parameters were close to convergence on
their optimum values. These refinements were characterized by reasonably good fig-ures-of-merit (for the neutron data: $R_{\mathrm{P}}=$ $4.47, R_{\mathrm{WP}}=5.80, R_{\mathrm{EX}}=3.21, R_{\mathrm{WP}} / R_{\mathrm{EX}}=$ $1.81, R_{\mathrm{B}}=1.44$; for the X-ray data: $R_{\mathrm{P}}=$ $12.68, R_{\mathrm{WP}}=17.97, R_{\mathrm{EX}}=7.72, R_{\mathrm{WP}} / R_{\mathrm{EX}}=$ $2.33, R_{\mathrm{B}}=5.10$). However, it was clear from an ($I_{\text {OBS }}-I_{\text {CALC }}$) difference plot that a second phase was present in the sample in substantial amounts. This component was identified (5) as the solid solution $\mathrm{Ca}_{2} \mathrm{MnO}_{3}$ (13), which takes the NaCl structure with O in site ($4 a$) and $(\mathrm{Ca}, \mathrm{Mn}$) disordered in a $2: 1$ ratio in site ($4 b$) of space group $\mathrm{Fm} 3 \mathrm{~m}\left(\mathrm{O}_{\mathrm{h}}^{5}\right.$, No. 225). The X-ray diffractogram provided the most unambiguous evidence for the presence and identification of the second phase in the sample, with the 10% relative peak at 38.3° and the 7% peak at 55.3° identified as the (200) and (220) reflections of $\mathrm{Ca}_{2} \mathrm{MnO}_{3}$. The (220) reflection was also clearly present in the neutron difference plot.

Incorporation of this second phase into the scattering model with independently varied scale constant, cubic lattice constant, half-width parameters, and atom thermal parameters significantly improved the figures-of-merit of the refinement, as well as the appearance of both the X-ray and neutron difference plots. Figure 1 shows the observed, calculated, and difference X-ray diffraction patterns for the twophase Rietveld refinement of the $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ data and Fig. 2 is an analogous plot of the neutron data. Table IV contains details of both the X-ray and neutron refinements, including figures-of-merit and final values for all parameters varied in the least-squares analyses except the $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ position and temperature parameters that are given in Table V and the background polynomial coefficients, 2θ zero point and individual phase scale factors, whose precise values are unimportant to the discussion of the results. Table VI contains bond distances and angles for $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ calculated from

Fig. 1. Observed, calculated, and difference plots of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ X-ray data.
both the X -ray and neutron refinement results.

Careful examination of the $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ diffraction patterns reveals that impurities in addition to $\mathrm{Ca}_{2} \mathrm{MnO}_{3}$ are present in the sample used in these experiments. The evidence is clearer in Fig. 1, where the small peaks observed at $\sim 27, \sim 29.4$, and $\sim 34.5^{\circ}$ are not predicted by either phase included in the Rietveld analysis. These peaks may be attributed to minor amounts of impurities because their relative intensities and indeed presence vary between $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ preparations. Some can be assigned to byproducts expected in the synthesis. For instance, the peak at 34.5° corresponds to the 75% peak in the standard diffractogram of $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ (JCPDS Card No. 24-1194) and its intensity can be used as a measure of the degree to which the starting material has
undergone reduction. The $\mathrm{Ca}_{2} \mathrm{MnO}_{4} 100 \%$ peak at 33° is masked by the intense (123) $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ and (111) $\mathrm{Ca}_{2} \mathrm{MnO}_{3}$ peaks that both occur at $\sim 33^{\circ}$. Similarly, the peak at 29.4° corresponds to the 100% peak in the standard diffractogram for CaCO_{3} (calcite, JCPDS Card No. 5-586). The one remaining peak at $\sim 27^{\circ}$ has not been identified. Differences between the actual instrumental profile function and that used in the Rietveld analysis (12) cause sharp peaks in the X-ray difference plot at positions of intense observed reflections. The cause of the high and varying background levels observed in the neutron diffraction pattern is not clear, although similar results were observed in the analogous $\mathrm{CaMnO}_{2.5}$ study (2). Neither the X-ray nor the neutron Rietveld refinement included any corrections for preferred orientation in the sample, but the X-ray re-

Fig. 2. Observed, calculated, and difference plots of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ neutron data.

TABLE IV
Rietveld Refinement Results

Figures-of-merit ${ }^{a}$	X-Ray data	Neutron data
R_{P}	10.66	3.94
R_{WP}	14.61	5.16
R_{EX}	7.71	3.20
$R_{\mathrm{wP}} / R_{\mathrm{EX}}$	1.89	1.61
No. of variables	38	36
η	$0.83(2)^{b}$	
	$\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$	
R_{B}	2.90	1.14
No. of reflections	265	302
$a(\AA)$	$5.3029(3)$	$5.297(1)$
$b(\AA)$	$10.0540(5)$	$10.053(2)$
$c(\AA)$	$12.2300(6)$	$12.221(2)$
U	$0.16(2)$	$2.1(3)$
V	$-0.04(2)$	$-0.2(3)$
W	$0.037(4)$	$0.31(6)$
Asymmetry	$0.20(6)$	
	$\mathrm{Ca}_{2} \mathrm{MnO}$	
R_{B}	2.40	
No. of reflections	11	1.23
$a(\AA)$	$4.6961(6)$	11
U	$-0.8(3)$	$4.704(3)$
V	$1.8(3)$	$-2(3)$
W	$-0.47(7)$	$4(3)$
$B(\mathrm{Ca}, \mathrm{Mn}), \AA^{2}$	$1.7(3)$	$-0.6(6)$
$B(\mathrm{O}), \AA^{2}$	$1.1(5)$	$6(2)$
	$1.1(6)$	

[^3]finement (Fig. 1) contains three peaks for which the calculated intensity is markedly lower than that observed. These peaks occur at 33,50 , and $69^{\circ} 2 \theta$ and correspond to the (123), (240), and (246) reflections, respectively. The fact that two members of the (123) family of planes are substantially underestimated may be evidence for a small amount of preferred orientation in the X ray data, although, as mentioned above, the
intensity of the 33° peak is also augmented by the presence of impurities in the sample.
In both the X-ray and neutron data analyses, the background was parameterized as a polynomial function of the diffraction angle 2θ in degrees, where the polynomial coefficients were included in the least-squares refinement. Half-width parameters U, V, and W have their usual meanings and explicit definitions for the figures-of-merit quoted in Table IV, as well as for the asymmetry correction applied to the X-ray profiles, are given in Refs. (11, 12). Reflection positions and intensities were calculated for both Cu $K \alpha_{1}(\lambda=1.5405 \AA)$ and $\operatorname{CuK} \alpha_{2}(\lambda=1.5443$ \AA) in the X-ray Rietveld refinement, with a factor of 0.5 applied to the latter's calculated integrated intensities. The profile function used in the neutron data refinement was the usual Gaussian form but the X-ray data was refined using a pseudoVoigt function (12) with the mixing parameter η included in the least-squares refinement. Correction for incident X-ray intensity variation caused by the θ-compensating divergence slit was accomplished by multiplying the calculated integrated intensity of each reflection by a factor $c=\sin (a \theta$ $+b$), where 2θ in degrees refers to the midpoint of the reflection. Constants $a=$ 0.8438 and $b=6.8140$ were determined for a least-squares analysis of the experimentally measured variation of incident intensity with diffraction angle.

Discussion

This work has established that the structural change observed when CaMnO_{3} is reduced to $\mathrm{CaMnO}_{2.5}$ also occurs when $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ is reduced to $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$. Upon reduction in the $A B O_{3}$ system (2), oxygen sites in the three-dimensional cornershared network of Mn^{+4} octahedra are defected in planes, thus producing a layer structure of interconnected distorted square-pyramidal $\mathbf{M n}^{+3}$ coordination poly-

TABLE V
Fractional Coordinates and Temperature Factors for $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$

| Atom | Site | Symmetry | x | y | z | $B\left(\AA^{2}\right)$ |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Ca | $16 g$ | | $0.7862(5)^{a, b}$ | $0.1244(7)$ | $0.1521(2)$ | $1.76(7)$ |
| | | | $0.7870(12)^{c}$ | $0.1251(11)$ | $0.1533(5)$ | $0.88(11)$ |
| Mn | $8 f$ | m | $0.2672(7)$ | $0.1241(7)$ | 0.0 | $1.81(9)$ |
| | | | $0.2684(26)$ | $0.1304(19)$ | | $0.33(17)$ |
| O 1 | $16 g$ | 1 | $0.2759(15)$ | $0.1193(17)$ | $0.1645(6)$ | $1.85(15)$ |
| | | | $0.2718(9)$ | $0.1207(8)$ | $0.1589(4)$ | $0.66(10)$ |
| O 2 | $8 f$ | m | $0.0637(26)$ | $0.2960(13)$ | 0.0 | $1.42(31)$ |
| | | | $0.0784(14)$ | $0.2975(8)$ | | $1.15(15)$ |
| O 3 | $4 a$ | $2 / m$ | 0.0 | 0.0 | 0.0 | $1.92(57)$ |
| | | | | | | $0.71(21)$ |

${ }^{a}$ Estimated standard deviations in parentheses refer to the last significant digit.
${ }^{b}$ First line of results for each atom gives the final X-ray refinement parameters.
${ }^{c}$ Second line of results for each atom gives the final neutron refinement parameters.

TABLE VI
Structural Results for $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$

		X-Ray results	Neutron resulfs
Distance (\AA)			
$\mathrm{Ca}-\mathrm{O} 1$	$\frac{1}{1}+x, y, \frac{1}{2}-z$	$2.24{ }^{\circ}$	2.30
01	$1-x,-y, z$	2.48	2.49
O1	$\frac{1}{1}+x, \frac{1}{2}-y, z$	2.58	2.56
Ol	$1+x, y, z$	2.60	2.57
01	x, y, z	2.71	2.73
$\mathrm{Ca}-\mathrm{O}_{2}$	$\frac{1}{2}+x, \frac{1}{2}-y,-z$	2.34	2.31
O 2	$1+x, y, z$	2.93	2.98
Ca-O3	$1+x, y, z$	2.51	2.52
$\mathrm{Mn}-\mathrm{O} 1$	x, y, z	$2.01{ }^{\text {b }}$	$1.94{ }^{\text {c }}$
O1'	$x, y,-z$	2.01	1.94
$\mathrm{Mn}-\mathrm{O} 2$	x, y, z	2.04	1.96
O2'	$\frac{1}{2}+x, \frac{1}{2}-y,-z$	1.77	1.80
Mn-O3	x, y, z	1.89	1.93
Angle (*)			
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{Ol}^{\prime}$		$176.2^{\text {d }}$	174.2
02		91.9	92.7
O2'		89.5	90.7
03		90.1	88.4
O2-Mn-O2'		94.9	97.1
03		99.4	101.8
O2'-Mn-O3		165.7	161.1
$\mathrm{Mn}-\mathrm{O2}-\mathrm{Mn}$		149.0	144.7

[^4]hedra that retains perovskite-like connectivity in the third direction. The Mn^{+4} octahedra in $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ form a perovskite-like network in only two dimensions, with axial oxygens coordinated to Ca atoms in the third direction. Upon reduction, the same defect structure (as illustrated in Figs. 3 and 4 of Ref. (2)) is created in the perovskitelike layers of the $A_{2} B O_{4}$ system, with the third direction unaffected. In Fig. 3, the fully oxidized $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ structure is contrasted with the defect structure of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$; comparison of this figure with Fig. 1 in Ref. (2) for the $\mathrm{CaMnO}_{3} / \mathrm{CaMnO}_{2.5}$ structures graphically illustrates the similarities between the systems.

Fig. 3. (a) Fully oxidized MnO_{6} sheets in $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$. (b) Defect MnO_{5} sheets in $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$.

In each example cited above, removal (reduction) of an oxide ion from the lattice generates adjacent Mn^{3+} cations. In these two examples and in other recent examples (largely characterized by electron diffraction (14)), corner-connected MnO_{5} squarepyramids are the central structural feature of these grossly anion-deficient materials. The original proposal for this coordination was based on the observation that the perovskite-like sheets of octahedral Mn^{4+} found in $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ underwent distortion upon reduction in exactly the same fashion as in CaMnO_{3}. That is, the observed unit cell distortion in both $\mathrm{CaMnO}_{2.5}$ and $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ could be described by the equation $\left(a_{\mathrm{o}}+b_{0} / 2\right) / 2=\sqrt{2} a_{\mathrm{c}}$; in this equation, the new orthorhombic unit cell parameters a_{0} and b_{0} are related to the distance a_{c} ($\sim 3.7 \AA$) characteristic of the $\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}$ bond length sum in the oxidized state.

In the analysis of the X-ray and neutron diffraction data of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$, the rock-salt phase $\mathrm{Ca}_{2} \mathrm{MnO}_{3}$ was determined to be the major contaminant. Contamination with this phase was found to be a problem in all preparations of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ when hydrogen was used at reaction temperatures approaching $325^{\circ} \mathrm{C}$, and it became the dominant phase at higher temperatures. This is in contrast to the preparation of CaMnO 2.5 where incomplete reduction (e.g., CaMn $\mathrm{O}_{2.75}$) and two-phase decomposition (CaO and $\mathrm{CaMn}_{2} \mathrm{O}_{4}$) reactions were more prevalent. The latter reaction may occur with Ca_{2} $\mathrm{MnO}_{3.5}$, since some CaO (as CaCO_{3} after exposure to air) was detected, but no evidence could be found for $\mathrm{CaMn}_{2} \mathrm{O}_{4}$. Contamination with minor amounts of other phases is a general concern when reaction conditions are different from those more narrowly defined by equilibrium considerations. The advantage of nonequilibrium reaction conditions lies in that new compounds that are metastable, or perhaps stable only at lower temperatures, can be prepared; however, the concurrent prob-
lem of sample homogeneity under these conditions should not be ignored.

The structures of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ determined on the basis of X-ray and neutron data are very similar. Each refinement produces a long $\mathrm{Mn}-\mathrm{O} 2$ bond length and a relatively short one. This is required since the sum of these two lengths should not differ significantly from $3.7 \AA$, yet there must be an unequal occupation of the $d_{z^{2}}$ and $d_{x^{2}-y^{2}}$ orbitals by the differentiating electron in $\mathrm{Mn}^{3+}\left(d^{4}\right)$. Other manganese-oxygen distances are intermediate in length and follow the same pattern (axial lionger than equitorial) found in the oxidized precursor. The magnitudes and distribution of calcium-oxygen bond distances in $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ are also similar to those found in $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$, although the Ca^{2+} coordination number changes from nine to eight upon reduction of the manganese. There are no unusuallyshort oxygen-oxygen nonbonded contacts in the defect solid; the shortest distance ($\mathrm{O} 1-\mathrm{O} 2,2.66 \AA$) agrees well with the distances found in the oxidized precursor. An important result of the $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ structural study is the discovery that the two-dimensional, corner-shared network of MnO_{6} coordination polyhedra is distorted by twisting the octahedra by $\sim 9^{\circ}$ about their z axes, as shown in Fig. 4. The resulting $\mathrm{Mn}-\mathrm{O}_{-}$ Mn bond angle (161.6°) is close to those found (2) in CaMnO_{3} (158.6, 157.2°), although the distortion in CaMnO_{3} results from tilts of the octahedra about all three axes.
As can be seen from the data in Table VI, the X-ray and neutron refinements of $\mathrm{Ca}_{2} \mathrm{MnO}_{3.5}$ disagree on several derived bond lengths and angles by more than 3σ. One serious disagreement involves the position of atom O2; a similar discrepancy was found in the $\mathrm{CaMnO}_{2.5}$ structure determinations. Others result from a disagreement about the z coordinate of O1. These differences may be due to low error estimates from the Rietveld analysis method

Fig. 4. Orientation of manganese octahedra in $\mathrm{Ca}_{2} \mathrm{MnO}_{4}$ as viewed from the c direction.
$(15,16)$. Alternatively, if the differences are real, then one might judge the neutron results to be the more reliable from a comparison of figures-of-merit given in Table IV. The neutron data, however, are troubled by the high background levels and broad diffraction peak widths mentioned above. The X-ray diffractogram has a cleaner appearance and there is greater consistency among the thermal parameters derived from this refinement (see Table V), but this analysis will be affected by the inadequacies of the X-ray peak profile function and by the other experimental problems cited earlier. Thus, there are reasons for preferring each set of results, with no clear and unambiguous way to resolve the matter. The neutron data also may be more sensitive to the presence in small amounts of domains with different defect ordering schemes; such domains have been detected in $\mathrm{CaMnO}_{2.5}$ by electron diffraction and appear to be associated with the method of preparation (17). All the oxygen vacancy order schemes so far proposed for these do-
mains, however, still combine the essential structural features of the starting material with pairs of Mn^{3+} cations in approximately square-pyramidal coordination.

Acknowledgment

The authors express their thanks to Dr. W. B. Yelon for the powder neutron data.

References

1. K. R. Poeppelmeier, M. E. Leonowicz, and J. M. Longo, J. Solid State Chem. 44, 89 (1982).
2. K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, J. M. Longo, and W. B. Yelon, J. Solid State Chem. 45, 71 (1982).
3. L. Er-Rakho, C. Michel, J. Provost, and B. Raveau, J. Solid State Chem. 37, 151 (1981).
4. J. C. Grenier, M. Pouchard, and P. Hagenmuller, Struct. Bonding 47, 1 (1982).
5. H. S. Horowitz and J. M. Longo, Mater. Res. Bull. 13, 1359 (1978).
6. K. Vidyasager, J. Gopalakrishnan, and C. N. R. Rao, Inorg. Chem. 23, 1206 (1984).
7. D. A. Weng, I. Johnson, and R. D. Wilson, J. Chem. Eng. Data 14, 252 (1969).
8. J. H. Kuddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).
9. P. Poix, J. Solid State Chem. 31, 95 (1980).
10. P. Ganguly and C. N. R. Rao, J. Solid State Chem. 53, 193 (1984).
11. D. B. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981).
12. R. A. Young and D. B. Wiles, J. Appl. Crystallogr. 15, 430 (1982).
13. A. H. Jay and K. W. Andrews, J. Iron Steel Inst. London 152, 15 (1946).
14. A. Reller, D. A. Jefferson, J. M. Thomas, and M. K. Uppal, J. Phys. Chem. 87, 913 (1983).
15. M. Sakata and M. J. Cooper, J. Appl. Crystallogr. 12, 554 (1979).
16. H. G. Scott, J. Appl. Crystallogr. 16, 159 (1983).
17. A. Reller, D. A. Jefferson, J. M. Thomas, R. A. Beyerlein, and K. R. Poeppelmeier, J. Chem. Soc. Commun., 1378 (1982).

[^0]: * To whom correspondence should be addressed.
 \dagger Present address: Department of Chemistry, Northwestern University, Evanston, Ill. 60201.
 \ddagger Present address: Exxon Production Research Co., Houston, Tex. 77001.

[^1]: ${ }^{1}$ See NAPS document No. 04274 for 3 pages of supplementary material. Order from ASIS/NAPS, Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$ up to 20 pages plus $\$.30$ for each additional page. All orders must be prepaid. Institutions and organizations may order by purchase order. However, there is a billing and handling charge for this service of $\$ 15$. Foreign orders add $\$ 4.50$ for postage and handling, for the first 20 pages, and $\$ 2.00$ for additional 10 pages of material. Remit $\$ 1.50$ for postage of any microfiche orders.

[^2]: ${ }^{a}$ Frequency of occurrence as nearest neighbors of the cation.
 ${ }^{b}$ Estimated standard deviations in parentheses refers to the last significant digit.

[^3]: ${ }^{a} R_{\mathrm{p}}$ is the profile discrepancy factor, R_{WP} is the weighted profile discrepancy factor and R_{EX} is the expected weighted profile discrepancy factor. R_{B} is a discrepancy factor based on the difference between observed and calculated integrated intensities; the observed values are obtained by partitioning overlapping peaks in the spectrum. Explicit definitions for the figures-of-merit are given in Refs. (11, 12).
 ${ }^{b}$ Estimated standard deviations in parentheses refer to the last significant digit.

[^4]: ${ }^{a}$ The estimated standard deviation of $\mathrm{Ca}-\mathrm{O}$ bond distances is $0.01 \AA$.
 ${ }^{b}$ The estimated standard deviation of $\mathrm{Mn}-\mathrm{O}$ bond distances is $0.01 \AA$ for the X-ray results.
 ${ }^{c}$ The estimated standard deviation of $\mathrm{Mn}-\mathrm{O}$ bond distances is $0.02 \AA$ for the neutron results.
 ${ }^{d}$ The estimated standard deviation of bond angles is 0.5°.

